La tabla de sumar para números binarios es la siguiente:
+ | 0 | 1 |
---|---|---|
0 | 0 | 1 |
1 | 1 | 10 |
Las posibles combinaciones al sumar dos bits son:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10
Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.Ejemplo
110011000 +
00010101
———————————
10101101
Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas las columnas (exactamente como en decimal).
Sustracción de números binarios.
El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
La resta 0 - 1 se resuelve igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1 (este valor se resta al resultado que obtenga, entre el minuendo y el sustraendo de la siguiente columna), lo que equivale a decir en el sistema decimal, 2 - 1 = 1.
Ejemplos
En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46.
Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:
Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
Producto de números binarios.
La tabla de multiplicar para números binarios es la siguiente:
El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.
Por ejemplo, multipliquemos 10110 por 1001:
División de números binarios.
La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, estas deben ser realizadas en binario. Ejemplo
Dividir 100010010 (274) entre 1101 (13):
Sustracción de números binarios.
El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)
La resta 0 - 1 se resuelve igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1 (este valor se resta al resultado que obtenga, entre el minuendo y el sustraendo de la siguiente columna), lo que equivale a decir en el sistema decimal, 2 - 1 = 1.
Ejemplos
10001 11011001 -01010 -10101011 —————— ————————— 00111 00101110
En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46.
Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:
Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
100110011101 1001 1001 1101 -010101110010 -0101 -0111 -0010 ————————————— = ————— ————— ————— 010000101011 0100 0010 1011
Producto de números binarios.
La tabla de multiplicar para números binarios es la siguiente:
· | 0 | 1 |
---|---|---|
0 | 0 | 0 |
1 | 0 | 1 |
Por ejemplo, multipliquemos 10110 por 1001:
10110 x 1001 ————————— 10110 00000 00000 10110 ————————— 11000110En sistemas electrónicos, donde suelen usarse números mayores, se utiliza el método llamado algoritmo de Booth.
11101111 x 111011 __________ 11101111 11101111 00000000 11101111 11101111 11101111 ______________ 11011100010101
División de números binarios.
La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, estas deben ser realizadas en binario. Ejemplo
Dividir 100010010 (274) entre 1101 (13):
100010010 /1101 = 010101 -0000 ——————— 10001 -1101 ——————— 01000 - 0000 ——————— 10000 - 1101 ——————— 00111 - 0000 ——————— 01110 - 1101 ——————— 00001
0 comentarios:
Publicar un comentario